Introduction to the SWC

High Performance

Computing Systems

Alex Martin Introduction to the SWC HPC 15/05/2023

Introduction

High Performance Computing is a term given to the use of supercomputers and computer clusters to solve large
computational problems.

Mostly nowadays its how to scale up a single desktop PC to a resource with 100's or 1000's of systems.
It is a combination of:

Compute hardware: CPUs & GPUs to perform computation

Data storage: for high-speed, low-latency, parallel access to large amounts of data

Networking: to link the devices together at high-speeds (10Gbit/sec or higher)

Efficiency: The hardware and running costs (mostly power) from having a large computing resources are high
So it makes sense to concentrate them and use them efficiency (24-7 operations)

Software: to provide an common environment in which to run your code and distribute efficiently across the computing
hardware.

Alex Martin Introduction to the SWC HPC 15/05/2023

At SWC we have our own locally hosted and managed HPC resources. These are designed with SWC
requirements in mind and are a mixture of CPUs, GPUs and large storage.

Compared with the large HPC sites we have a small number of the latest systems, but we also tend to
keep older systems running all the time they are useful. So the HPC hardware resources are fairly
heterogeneous. In total we have around 1500 CPU cores and 45 GPUS.

All the systems have fast access to main filestores (ceph, winstor, gatsbystor etc.).

All the systems have the same Operating System (currently Ubuntu 20.04 LTS) and the user
environment is the same on all systems (same s/w filesystems etc).

The HPC resources are normally accessed and regulated via a system called SLURM. This system queues-
up and distributes the workload to appropriate resources.

We are very flexible, so If the systems or services do not match your requirements, please raise a ticket
to discuss this with the IT Project team.

Alex Martin Introduction to the SWC HPC 15/05/2023

CPU-only nodes

We have a lot of CPU (~1000 cores) capacity in blade servers, some of these are fairly old, but can still provide a lot of bulk capacity.
These tend to have lower contention.
Note: Many don't has much memory/core (so its good to request the correct amount)

Note2: Most only have 1Gb networking

CPU Platform Architecture

Architecture Cores per CPU RAM Interconnect Network SLURM Feature Intel Codename
Intel Xeon E5-2660 v3 @ 10 64 - 128 GB Ghe Gbe GenuineIntel-6-63 @ Haswell

2.60GHz

Intel Xeon E5-2650 v4 @ 12 64 - 256 GB Ghe Gbe GenuineIntel-6-79 @ Broadwell
2.2GHz

Intel Xeon E5-2660 v4 @ 14 128-512 GB 10 Gbe 10 Ghe GenuineIntel-6-79 @ Broadwell
2.2GHz

Alex Martin Introduction to the SWC HPC 15/05/2023

GPU nodes

We currently have 18 nodes fitted with Nvidia GPU's of 6 different types:

Card Architecture (Note SLURM Cores GFLOPS GFLOPS GPU
1) gres (cuda:tensor:RT) (s) (d) Memory
GTX 1080 GP104-100 gtx1080 2560:160:64 8228 257 8GB
GTX 1080 TI GP102-350 3584:224:88 10609 332 11GB
Quadro P5000 GP104 p5000 2560:160:64 8900 ~300 8GB / 16GB
ECC
Quadro P6000 GP102 3840:240:96 10882 ~375 8GB ECC
RTX 2080 TU104 rtx2080 2944:184:64 8920 278 8GB
Quadro RTX TU104 2304:144:64 7119 223 8GB ECC
4000
Quadro RTX TU104 rtx5000 3072:192:64 11151 349 16GB ECC
5000
Quadro RTX TU102 4608:288:96 16312 510 24GB ECC
6000
A100 GA100 al00 6912:432:108 19500 9700 40GB ECC
H100 GH100 14592:456:114 51200 25600 80GB ECC
Notes

1. GP = Pascal, GM = Maxwell, TU=Turing, GA = Ampere, GH = Hopper
2. Cores - Unified shaders: texture mapping units: render output units
3. GFLOPS given are those at the base clock rate : (s) single-precision (d) double precision

Alex Martin Introduction to the SWC HPC 15/05/2023

GPU nodes

About half of the capacity is in three quad-A100 systems, these are very similar in specs to those used as building
bricks for very large Supercomputing systems (2 years ago).

They have 64 cores, 512GB RAM, multiple 25Gb (potentially 100Gb) networking, NVMe drives.

Most of the current workload doesn't need to use a whole a100 GPU (40GB memory) so we normally configure
two of the systems in what Nvidia refer to as MIG mode. The allows a single GPU to act as multiple virtual GPU's

Currently we have a100's configured in a mode with three a100_2g.10gb instances so we can have effectively
12 (lower capacity) GPU's in a single server.

These lower capacity GPUs are actually still better in performance to some of the older GPU's...so if your task isn't too
demanding (can fit into a rtx1080). You can generically request a GPU without worrying too much.

Getting Started on HPC

Get an SWC account - you will need this to be able to submit jobs using SLURM. /

Be familiar with basic Unix commands.

You will need to be logged into a machine that is a SLURM client - e.g. ssh to a HPC gateway (or login
to a managed Linux desktop system)

The HPC gateway node is called: hpc-gw1.hpc.swc.ucl.ac.uk You can use this for
lightweight development work, file transfers etc.

There is also a bastion node (sgw2) that can be accessed externally as
ssh.swc.ucl.ac.uk

Make sure that you are using the correct filesystems, file sizes etc. Look at things to avoid.
Familiarise yourself with submitting jobs to SLURM and requesting resources.

Develop your workflow - where is your input data and output data going, who should be able to access it
etc.

Alex Martin Introduction to the SWC HPC 15/05/2023

File Systems

The HPC systems have fast access to all of the core storage systems either as a native mount (ceph) or via nfs. All the mounts are done via
an automounter. The same maps are applied to all systems so that changes are made globally.

The main filesystems are: /nfs/nhome and /nfs/ghome home filesystems for SWC and Gatsby users
/nfs/winstor/<Lab Group> Winstor data storage for Lab Groups
/nfs/gatsbystor Gatsby data storage
/ceph/scratch Scratch storage (not backed up)
/ceph/apps Application area
/ceph/<Lab Group> Ceph data storage for Lab groups

The /ceph storage refers to what is becoming our main storage platform. cephfs is a distributed filesystem (currently using about 20 servers)
where the data are stored with redundancy (currently we are using 8+3 encoding) using a mixture of NVMe drives and hard drives and has
dedicated 100Gb switches on the HPC network. Currently we have around 8PB of storage.

Alex Martin Introduction to the SWC HPC 15/05/2023

Access via the Automounter:

pC-gwl:~$
amartin@hpc-gwl:~$ 1ls /ceph
aeon apps erlich neuroinformatics scratch
amartin@hpc-gwl:~$ 1s /ceph/akrami
Edmund Peter TEST capsid testing neuropixels recordings
George Quentin akrami transfer.log mouse reconstruction
amartin@hpc-gwl:~$ 1ls /ceph
aeon akrami apps erlich neuroinformatics scratch
amartin@hpc-gwl:~$ 1s /ceph/margrie
1s: cannot open directory '/ceph/margrie': Permission denied
amartin@hpc-gwl:~$ 1s /ceph
aeon akrami apps erlich margrie neuroinformatics scratch
amartin@hpc-gwl:~$
amartin@hpc-gwl:~$
amartin@hpc-gwl:~$ id amartin
uid=801150777 (amartin) gid=801150777(amartin) groups=801150777(amartin), 801100504 (gatsby),801151006(akrami)

In general you will only have access to the data shares of the groups you are a member of. In you
think this is wrong you will need to contact the helpdesk.

Alex Martin Introduction to the SWC HPC 15/05/2023

How much storage space can | use?

Most of the file storage has quotas. Individually on the home file systems and for the Lab shares.
For your home space, its fairly limited and you should not be using it for data storage:

amartin@sgw2:~/sample jobs$ quota
Disk quotas for user amartin (uid 801150777):
Filesystem blocks quota 1limit grace files quota 1limit qgrace

swc-homes.id.swc.ucl.ac.uk:/vol homes
8871864 209715200 262144000 45350 4294967295 4294967295
amartin@sgw2:~/sample jobs$ [}

For ceph volumes the quota defines total space on the volume:

:~$ df -BT | grep ceph
,192.168.234.155,192.168.234.156,192.168.234.157,192.168.234.158,192.168.234.159:6789:/erlich 31% /ceph/erlich
,192.168.234.155,192.168.234.156,192.168.234.157,192.168.234.158,192.168.234.159:6789: /aeon 70% /ceph/aeon

,192.168.234.155,192.168.234.156,192.168.234.157,192.168.234.158,192.168.234.159:6789: /neuroinformatics 17% /ceph/neuroinformati
,192.168.234.155,192.168.234.156,192.168.234.157,192.168.234.158,192.168.234.159:6789: /apps 9% /ceph/apps

If you run out of space you will need to raise it with the HelpDesk.

Alex Martin Introduction to the SWC HPC 15/05/2023

SWC HPC Software Environment

The HPC (and other managed Linux systems) have a base installation based on a version of
Ubuntu with long term support (currently 20.04 LTS) and because upgrades take some
effort to manage the changes and fix the bugs, we aim to maintain a stable environment
foe a few years.

If a package comes with the standard OS or supported repo, we generally add it to a list of
packages that are automatically installed (by puppet). This ensures its on all systems,
even if a system needs to be reinstalled.

If you would like a standard package installed, please ask.

For some software, particularly python based packages, you may find it best to setup
your own environments using e.g. conda/pip?

For other software which is not pre-packaged or here we need to have multiple versions
we install in a shared area and use the module system to manage it.

Alex Martin Introduction to the SWC HPC 15/05/2023

Linux Environmental Modules

The HPC (and other managed Linux systems) uses a package called environmental modules for managing
the shell environment including software paths. The modules system permits users to set up the shell
environment to make running and compiling software easier. It also allows users to avail of many
software packages and libraries that might otherwise conflict with one another and to maintain multiple
versions of the same package.

The module system is a script based system used to manage the user environment and to “activate”
software packages. In order to access software that is installed on the cluster, you must first load the
corresponding software module.

In the background these scripts are setting up the appropriate PATHS and environmental variables to
use a particular package

Alex Martin Introduction to the SWC HPC 15/05/2023

Useful modules commands

module avail lists all available software modules
module avail [name] lists modules matching [name]
module load [name] loads the named module

module unload [name] unloads the named module
module list lists the modules currently loaded for the user

module help help

Alex Martin Introduction to the SWC HPC

15/05/2023

examples

To find out which packages are available do; > module avail

amartin@hpc-gwl:~$ module avail

/usr/share/modules/modulefiles

module-info modules null

module-git

use.own

/ceph/apps/ubuntu-20/modulefiles

cuda/11.6

cuda/11.8

cuda/12.0
deeplabcut/2022-07-06
julia/1.7.3
kilosort3/2022-10-06

To find out which modules are loaded > module list

amartin@hpc-gwl:~$ module list
No Modulefiles Currently Loaded.
amartin@hpc-gwl:~$ module load cuda
amartin@hpc-gwl:~$ module list
Currently Loaded Modulefiles:

1) cuda/12.0

amartin@hpc-gwl:~$ module unload cuda
amartin@hpc-gwl:~$ module load cuda/11.8
amartin@hpc-gwl:~$ module list
Currently Loaded Modulefiles:

1) cuda/11.8

To load a module > module load

To unload a module > module unload <name>

Alex Martin

Introduction to the SWC HPC

matlab/R2018a
matlab/R2019b
matlab/R2021a
matlab/R2022a
matplotlib/3.3.4
miniconda/4.9.2

neuron/8.0
pycharm/2022.2.1
SLEAP/2023-03-13

<name>/<version> if no <version> there is a default

15/05/2023

Useful modules commands

module avail lists all available software modules
module avail [name] lists modules matching [name]
module load [name] loads the named module

module unload [name] unloads the named module
module list lists the modules currently loaded for the user

module help help

Alex Martin Introduction to the SWC HPC 15/05/2023

Overview of SLURM job scheduler

The HPC cluster is a shared resource with different users who may want to run different jobs at the same
time. To make sure two or more users don't run two different conflicting programs on the same node, the
cluster uses a job scheduler that schedules different jobs from different users. This means making sure it
allocates each job to a different node and, if all the nodes are being used, putting any extra jobs that can't
currently be run in a queue so that they are sequentially allocated to different nodes in some useful way (e.g.
run all the short jobs first, then run all the long ones). The job scheduler that we use is called SLURM (Simple
Linux Utility for Resource Management). It performs the following functions:

Schedules submitted jobs.
Allocates requested compute resources.
Processes submitted jobs.

Like any other job scheduler, SLURM requires that you submit jobs to the queue in a particular way. Learning
this is basically all there is to it.

Our SLURM setup is very similar to that of other organisations. You should be able to utilise examples scripts
from anywhere with only slight modification for the local queues and software stack.

Alex Martin Introduction to the SWC HPC 15/05/2023

Useful SLURM commands

SLURM offers a number of helpful commands for tasks ranging from job submission, monitoring and modifying resource requests
for jobs that have already been submitted to the queue. Below is a list of SLURM commands with details on how to use them. You
must be logged into a system that is a SLURM client to use these commands.

sinfo The command allows users to view information about SLURM nodes and partitions.

sbatch This command is used for submitting jobs to the cluster. sbatch accepts a number of options either from the
command line or from a batch script.

srun The command is used to submit jobs for real-time execution. It can also be used to submit interactive jobs.

squeue This command shows you the current queue, i.e. the jobs currently running and which nodes they are running on,
and the jobs not yet running but on the queue.

scancel The command removes a job from the queue, or cancel a job that is currently running. If the job number i is 1234,
cancel it with scancel 1234. To cancel all the jobs submitted by user myname, use scancel -u myname.

sacct This command is used for viewing and display information for completed jobs. This can be useful for monitoring job
progress or diagnosing problems that occurred during job execution.

salloc The command allocates resources for an interactive job.

Alex Martin Introduction to the SWC HPC 15/05/2023

SLURM partitions

The HPC cluster has generally two main partitions (or queues) ‘cpu’ and 'gpu’ for production work, there is also a small ‘fast’ partition
intended for development work. The purpose of the ‘fast’ partition is to allow users to quickly test a job before submitting a larger
number of jobs to the production partition. You can display information about these partitions using the sinfo command. The following
is a typical output for the SWC cluster sinfo:

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

cpu* up infinite 7 drain~ encO-node[1-7]

cpu* up infinite 26 idle~ encl-node[l1l-6,8-10,12,14],enc2-node[1-6,8-12],enc3-node[5-8]
cpu* up infinite 2 mix encl-node7,enc2-node’

cpu* up infinite 3 alloc encl-node[ll,13],enc2-nodel3

cpu* up infinite 4 idle enc3-node[l-4]

gpu up infinite 11 mix gpu-350-[01-05],gpu-380-[11-13],gpu-sr670-[20-22]

gpu up infinite 6 idle gpu-380-[10,14-18]

fast up 3:00:00 2 idle encl-nodel6,gpu-erlichO1

This also should the status of the compute nodes: nodes that are idle are currently free of jobs..so a submitted job should run if it can
fit into node.

Nowadays we have enabled power saving on the cluster and shut down most systems when thay have been idle for a while. You can see
this with the nodes having “~” suffix to their state. Nodes in power saving mode are powered backup and put back to work when
allocated new jobs, with a latency

of 5-10 mins. This would be indicated by a “#” suffix. This allows us to keep a lot of the older

kit still available as “surge capacity” without wasting power.

Alex Martin Introduction to the SWC HPC 15/05/2023

Types of Jobs

Batch jobs (sbatch command)

A batch job is a non-interactive way of running a job on the cluster. There's no user input as the job script
controls the job. When a batch job is submitted to the cluster, it is put in a queue and then started later. The

advantage of using batch jobs is that you can queue many jobs simultaneously, which can start automatically
once resources are available. This is the primary method of running applications on the cluster

Interactive jobs (srun command)

An interactive job is a job that returns a command line prompt instead of running a script, when the job
runs. Interactive jobs are useful when debugging or interacting with an application. To run interactive
jobs, you use the srun command. When the job starts, a command line prompt will appear on the
compute node assigned. From here commands can be executed using the resources allocated on the local
node. The main advantage of interactive jobs is that you get immediate feedback.

Alex Martin Introduction to the SWC HPC 15/05/2023

Preparing a batch script

The first step for submitting a job to SLURM is to write a batch script. This instructs the scheduler how to run the script and what to do with the
results.The script is essentially a simple shell file that includes several #SBATCH directive lines that tell SLURM details about your job, including the
resource requirements.

Below is an example of how to write a simple job batch script file. ~amartin/sample_jobs/test1.sh

#!/bin/bash
#

#SBATCH -p cpu # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 1 # number of cores

#SBATCH --mem 100 # total memory required for all cores (N.B. default units are MB)
#SBATCH -t 0-2:00:00 # time (D-HH:MM:00)

#SBATCH -o slurm.%N.%j.out # STDOUT (3N expands to the hostname %3J to the job nuumber)
#SBATCH -e slurm.%N.%j.err # STDERR

#

#

#

hostname

sleep 10

exit

Alex Martin Introduction to the SWC HPC 15/05/2023

Submitting a job script

Once your script is prepared, you are ready to submit your job. To submit your job to the queuing system, use the command sbatch.
SLURM will then try to find or wait for available resources matching your request and run your job there. For example, if your script is
in 'test1.sh’ the command would be:

sbatch test1.sh

This will return a message with your job id.

amartin@hpc-gwl:~/samp1e:jobs$ sbatch testl.sh
Submitted batch job 3446190
amartin@hpc-gwl:~/sample jobs$ Lls

A g O L CYME L LY =T gl s Lurm. encl-node7. 3446190 . out e B

amartin@hpc-gwl:~/sample jobs$ cat slurm.encl-node7.3446190.out
encl-node7
amartin@hpc-gwl:~/sample jobs$

Alex Martin Introduction to the SWC HPC 15/05/2023

Monitor your job status

Once your job is submitted, you can monitor the progress of the job using several commands. To see your jobs, use the squeue -
u command and specify your username as shown below:

squeue -u <Your username> (if you miss out your username you get all jobs)

amartin@hpc-gwl:~/sample jobs$ squeue -u amartin
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
3446192 cpu test2.sh amartin R 0:54 1 encl-node7

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$

amartin@hpc-gwl:~/sample jobs$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

3446123 [6,36-41] cpu synth sl emmettt PD 0:00 1 (Resources)
3434778 cpu bash pierreg R 11-19:53:56 1 encl-node7
3439724 cpu bash pierreg R 8-20:01:42 1 enc2-node7
3446192 cpu test2.sh amartin R 1:00 1 encl-node7
3445708 cpu bash jlee R 1-04:32:28 1 enc2-node7
3446123 21 cpu synth sl emmettt R 26:11 1 enc2-nodel®
3446123 35 cpu synth sl emmettt R 26:40 1 encl-nodeb
3446123 28 cpu synth sl emmettt R 26:41 1 encl-node5
3446123 34 cpu synth sl emmettt R 26:42 1 encl-node3
3446123 33 cpu synth sl emmettt R 26:43 1 enc3-nodeb
3446123 24 cpu synth sl emmettt R 27:11 1 encl-nodel
3446123 25 cpu synth sl emmettt R 27:11 1 encl-node2
3446123 27 cpu synth sl emmettt R 27:11 1 encl-noded

Alex Martin Introduction to the SWC 15/05/2023

Check your job output

Once your job is submitted and has started, it will write its standard output and standard error to files that you can read. SLURM will put the output
in the directory where you submitted the job in a file named slurm- followed by the job id with the extension out.

Below is an example of how to write a simple job batch script file. ~amartin/sample_jobs/test2.sh

#!/bin/bash
#

#SBATCH -p cpu # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 1 # number of cores

#SBATCH --mem 100 # total memory required for all cores (N.B. default units are MB)
#SBATCH -t 0-2:00:00 # time (D-HH:MM:00)

#SBATCH -o slurm.%j.out # STDOUT (3N expands to the hostname %3 to the job nuumber)
#SBATCH -e slurm.%j.err # STDERR

#

hostname

cat nosuchfile.txt

exit

amartin@hpc-gwl:~/sample jobs$ sbatch test2.sh

Submitted batch job 3446195

amartin@hpc-gwl:~/sample jobs$ 1s

slurm.encl-node7.3446195.err slurm.encl-node7.3446195.out testl.sh test2.sh
amartin@hpc-gwl:~/sample jobs$ cat slurm.encl-node7.3446195.out

encl-node7

amartin@hpc-gwl:~/sample jobs$ cat slurm.encl-node7.3446195.err
nosuchfile.txt: No such file or directory
:~/sample jobs$
:~/sample jobs$
:~/sample jobs$
:~/sample _jobs$ |

Alex Martin Introduction to the SWC HPC 15/05/2023

How do | find out what happened to my Job and what
Resources it used?

You need to have the Job_ID!

Then you see what happened to it and what resources it
used. Using the sacct command

amartin@sgw2:~/sample jobs$
amartin@sgw2:~/sample jobs$ sacct --format="NNodes,NCPUS,Start,End,CPUTime,MaxRSS" -j 3446122

NNodes NCPUS End CPUTime LEYGER)

1 1 2023-05-11T14:09:45 2023-05-11T14:14:42 00:04:57 169276K
amartin@sgw2:~/sample_jobs$ [

There are a lot more more possible parameters...do sacct -|
or man sacct to see them.

Alex Martin Introduction to the SWC HPC 15/05/2023

Using the GPU systems

To use a GPU you need to reserve one. You won't get one if you just submit a job
to the gpu partition

To reserve a GPU use the sbatch -—-gres directive

It takes the general form:

-—-gres gpu:<GPU Type>:Number of GPU's

<GPU Type> 1is optional

examples:
#SBATCH --gres gpu:l # requust any gpu
#SBATCH --gres gpu:rtx5000:2 # if you wanted two rtx5000 gpus

#SBATCH --gres gpu:al00 2g.10gb:1 # a 2g9.10gb MIG instance on a A100 GPU
(You can't have more than one of them)

You can check what GPU's are available in you job using the
nvidia-smi command

Alex Martin Introduction to the SWC HPC 15/05/2023

Example of GPU Job gpu_test.sh

/bin/bash

#SBATCH -p gpu
#SBATCH —--mem=1G

#!

request GPU
#SBATCH --gres gpu:l

Other examples

###SBATCH —--gres gpu:rtx5000:2

requust

if you wanted two rtx5000

###SBATCH --gres gpu:al00 2g.10gb:1 # request

hostname

load CUDA module
module load cuda/11.8
nvidia-smi

printenv | grep CUDA

load tensorflow module
module load tensorflow

python ./test tf.py

exit

Alex Martin

any gpu

al00 2g.10gb instance

Introduction to the SWC HPC

gpus

15/05/2023

amartin@sgw2:~/sample jobs$ more test tf.py
import tensorflow as tf
print("TensorFlow version:", tf. version)

ith tf.device('/gpu:0'):
tf.constant([1.0], shape=[2, 3], name='a')
tf.constant([1. : - . . .0], shape=[3, 2], name='b"')
= tf.matmul(a, b)
print(c)

In this simple tensorflow example we specify to use the first GPU device /gpu:0 (The
GPU allocated by SLURM will always appear as the first GPU)

Alex Martin Introduction to the SWC HPC 15/05/2023

amartin@sgw2:~/sample jobs$ more slurm-3446206.out
gpu-sr670-20
hu May 11 17:27:06 2023

Driver Version: 525.105.17 CUDA Version: 12.0

GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.

® NVIDIA Al00-SXM... On 0000PPOP:31:00.0 Off
N/A 31C PO 62W / 400W 2635MiB / 40960MiB Default
Enabled

Memory-Usage |
BAR1-Usage | SM Unc| CE ENC DEC OFA JPG|

13MiB / 9856MiB | 28
OMiB / 16383MiB |

Processes:
GPU GI

UDA DEVICE ORDER=PCI BUS ID
UDA_VISIBLE DEVICES=MIG-GPU-c37dfdb2-af80-ac6d-782f-1517794733be/3/0

Alex Martin Introduction to the SWC HPC 15/05/2023

2023-05-11 17:27:08.869741: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You ma
y see slightly different numerical results due to floating-point round-off errors from different comput
ation orders. To turn them off, set the environment variable "TF ENABLE ONEDNN OPTS=0".
2023-05-11 17:27:09.054611: I tensorflow/core/platform/cpu feature guard.cc:182] This TensorFlow binary
is optimized to use available CPU instructions in performance-critical operations.
o enable the following instructions: AVX2 AVX512F AVX512 VNNI FMA, in other operations, rebuild Tensor
Flow with the appropriate compiler flags.
2023-05-11 17:27:13.239371: W tensorflow/compiler/tf2tensorrt/utils/py utils.cc:38] TF-TRT Warning: Cou
ld not find TensorRT
2023-05-11 17:27:21.114005: I tensorflow/core/common runtime/gpu/gpu device.cc:1635] Created device /jo
b:localhost/replica:0/task:0/device:GPU:0 with 7960 MB memory: -> device: 0, name: NVIDIA Al00-SXM4-40
GB MIG 2g.10gb, pci bus id: 0000:31:00.0, compute capability: 8.0
2023-05-11 17:27:24.828278: 1 tensorflow/compiler/xla/stream executor/cuda/cuda blas.cc:637] TensorFloa
t-32 will be used for the matrix multiplication. This will only be logged once.
ensorFlow version: 2.12.0
tf.Tensor(
[[22. 28.]
[49. 64.]], shape=(2, 2), dtype=float32)

Alex Martin Introduction to the SWC HPC 15/05/2023

Parallel jobs in SLURM

There are many ways to do parallel work with SLURM.

Running a multi-threaded job or a multi-process job (e.g.: MPI)
current HPC is not really setup to do this efficiently across servers)

Running several instances of the same job using job arrays.

Alex Martin Introduction to the SWC HPC

15/05/2023

(The

Multi-process & Multi-threading

Multi-threaded programs are applications that are able to execute in parallel across multiple CPU cores within a single node using a shared
memory execution model.

To request that a parallel script spawns children processes tasks (e.g.: MPI), use the "--ntasks™ option.
To request that a job uses multiple threads, use the option "--cpus-per-task
Examples:

you want 16 processes to stay on the same node: --ntasks=16 --ntasks-per-node=16

you want one process that can use 16 cores for multithreading: --ntasks=1 --cpus-per-task=16

you want 16 processes to spread across 8 nodes to have two processes per node: --ntasks=16 --ntasks-per-node=2 (Not
recommended)

Alex Martin Introduction to the SWC HPC 15/05/2023

Array batch jobs

Job arrays are useful for submitting and managing a large number of similar jobs. This
can be used when you need to run the same script multiple times in parallel (for
different random seeds or choice of parameter for instance).

Here is an examples of a slurm script using a job arrays.

The environment variable 'SLURM_ARRAY_TASK_ID" holds the value of the job array.

Alex Martin Introduction to the SWC HPC 15/05/2023

Example of CPU Job array sbatch script array_test.sh

#!/bin/bash

#

#SBATCH -p cpu # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 8 # 8 cores

#SBATCH --mem 1G # total memory required for all cores (N.B. default units are MB)
#SBATCH -t 0-2:00:00 # time (D-HH:MM:00)

#

#SBATCH --array=0-3 # create an array of 4 tasks 0,1,2,3

#

#SBATCH -e slurm.%A_%a.err # STDERR
#

#

#

hostname

#SBATCH -o slurm.%A_%a.out # STDOUT (%A JOB_ID %a is task ID)

JOB_ARGS=(10 50 1000 2000)

./array_job.sh ${JOB_ARGS[SSLURM_ARRAY_TASK_ID]}
exit

When run this will effectively run four jobs with different arguments
for the following script

jamartin@sgw2:~/sample jobs$
jamartin@sgw2:~/sample jobs$ cat array job.sh
#!/bin/bash

echo "array job called with argument: " $1
sleep 100
amartin@sgw2:~/sample jobss$ |

Alex Martin Introduction to the SWC HPC 15/05/2023

amartin@sgw2:~/sample jobs$ sbatch array test.sh
Submitted batch job 3446381
amartin@sgw2:~/sample jobs$ squeue -u
JOBID PARTITION NAME
3446381 © cpu array te
3446381 1 cpu array te
3446381 2 cpu array te
3446381 3 cpu array te
amartin@sgw2:~/sample jobs$
amartin@sgw2:~/sample jobs$ 1s

amartin
USER S
amartin
amartin
amartin
amartin

NODELIST(REASON)
encl-node7
enc3-node2
enc3-node2
enc3-node2

-alrt

otal 68
rw
'rW'
-rw-
-rw-
rw

-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-Tr--
drwxrwxr-
-TW-TW-T--
-TW-TW-T--
-TW-TW-Tr--
-TW-TW-T--

rw-r--
rw-r--
rw-r--
rw-r--
rw-r--
- FWXr-Xr-
-TW-TW-T--
- F'WXTWXT -
-TW-TW-T--

Pt bt e et N e e et e OO b e e e e e e e e

amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin

amartin@sgw2:~/sample

enc3-node2
array job called with argument:

Alex Martin

amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
root

amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin
amartin

452
471
483
288
2503
356
3761
65
515
24576
0

0

0

0

47
49
49
47

May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12

1 -
1
:45
17
17/-
11
17
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

15

05
27

21
77
26
27
31
S

testl.
test2.
test3.

sh
sh
sh

test tf.py

slurm-3446205.out

gpu test.sh

slurm-3446206.out

array
array

SIS

34
34
34
34

slurm.
slurm.
slurm.
slurm.

34 .

34
34
34
34

slurm.
slurm.
slurm.
slurm.

jobs$ cat slurm.3446381 3.out

2000

Introduction to the SWC HPC

job.sh

_test.sh

3446381 0.
3446381 3.
3446381 1.
3446381 2.

3446381 0.
3446381 3.
3446381 2.
3446381 1.

15/05/2023

Using variables to define the array limits

SLURM does not support using variables in the #SBATCH lines within a job script.

However, values passed from the command line have precedence over values defined in
the job script. So the array can be passed on the sbatch command line.

So in the previous example if you do

sbatch --array=1-2 ./array_test.sh

you will find that two of the array tasks are submitted with task_ids 1 and 2

Alex Martin Introduction to the SWC HPC 15/05/2023

Interactive Jobs: srun command

The srun command launches a task interactively, it has a bunch of command-line options which basically correspond to the #SBATCH
directives (do man srun to look them up)

:~/sample jobs$
:~/sample jobs$
:~/sample jobs$ srun -p cpu hostname

:~/sample jobs$
amartin@sgw2:~/sample jobs$ srun -p gpu --gres=gpu:l nvidia-smi
Fri May 12 09:00:48 2023

| NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0

Rt e e e L o - o - +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

© Quadro P5000 00000000:0B:00.0 Off
| 19% 34C PO OMiB / 16384MiB

| Processes:
GPU GI

amartin@sgw2:~/sample jobs$ srun -p fast --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i
(base) amartin@encl-nodel6:~/sample jobs$
(base) amartin@encl-nodel6:~/sample jobs$ |

Alex Martin Introduction to the SWC HPC 15/05/2023

Alex Martin Introduction to the SWC HPC 15/05/2023

Alex Martin Introduction to the SWC HPC 15/05/2023

